I want to re-visit the Hertzian dipole, armed with the derivations from my previous post.
In the diagram below, $O$ is the origin of a spherical coordinate system $\langle {r},\;\theta,\;\phi\rangle$ where:
$$
0\le {r} \lt \infty,
\qquad 0 \le \theta \le \pi,
\qquad 0 \le \phi \le 2\pi,
\qquad \hat{r} \times \hat{\theta} = \hat{\phi}
$$
The $\theta = 0$ axis will be called the $\ell$-axis. The choice $\phi = 0$ direction, as long as it is perpendicular to the $\ell$-axis, does not affect what we are going to work out.
Our dipole is the segment $\overline{BA}$ which lies along this $\ell$-axis. At any instant $t$, the current at any point on the dipole is $I_0\cos {\omega t}\;\hat{\ell}$. The points $A$ and $B$ are assumed to have infinite capacitance.
We are interested in the fields at point $P$, so $\vec{OP} = \vec{r}$.
I'll recap the part of my last post that I use in this one.
Our dipole is the segment $\overline{BA}$ which lies along this $\ell$-axis. At any instant $t$, the current at any point on the dipole is $I_0\cos {\omega t}\;\hat{\ell}$. The points $A$ and $B$ are assumed to have infinite capacitance.
We are interested in the fields at point $P$, so $\vec{OP} = \vec{r}$.
I'll recap the part of my last post that I use in this one.
Given the following definitions:
$$
r = \left|\vec{r}\right|, \qquad \hat{r} = \dfrac {\vec{r}} {r}, \qquad t_r = t - \frac r c
$$
The electric and magnetic fields in the far-field region are given by:
$$
\vec{E}\left(\vec{r},t\right) \approx
\frac {1} {4 \pi \epsilon_0}
\left[
\frac {\mathcal{U}\left(\vec{r},t\right)} {r^2} \hat{r}
+ \frac {\left( \vec{\mathcal{X}}\left(\vec{r},t\right) \times \hat{r}\right) \times \hat{r}} {rc}
\right]
$$
$$
\vec{B}\left(\vec{r},t\right) \approx
\frac {\mu_0} {4 \pi}
\left[
\frac {\vec{\mathcal{X}} \left(\vec{r},t\right) \times \hat{r}} {r}
\right]
$$
When:
$$
\mathcal{U}\left(\vec{r},t\right) =
\mathcal{Y} \left( \hat{r}, t_r \right) +
\frac {\vec{\mathcal{Z}} \left( \hat{r}, t_r \right) \cdot \hat{r}} {c}
$$
$$
\vec{\mathcal{X}} \left(\vec{r},t\right) =
\frac {\vec{\mathcal{Z}} \left( \hat{r}, t_r \right)} {r} +
\frac {\vec{\mathcal{Q}} \left( \hat{r}, t_r \right)} {c}
$$
And:
$$
\mathcal{Y} \left(\hat{r},t\right) =
\iiint_{\mathbb{V}_s} \left[
\rho \left( \vec{r}_s, t + \dfrac {\vec{r}_s \cdot \hat{r}} {c} \right)
\right] \space dV\left(\vec{r}_s\right)
$$
$$
\vec{\mathcal{Z}} \left(\hat{r},t\right) =
\iiint_{\mathbb{V}_s} \left[
\vec{J} \left( \vec{r}_s, t + \dfrac {\vec{r}_s \cdot \hat{r}} {c} \right)
\right] \space dV\left(\vec{r}_s\right)
$$
$$
\vec{\mathcal{Q}} \left(\hat{r},t\right) =
\iiint_{\mathbb{V}_s} \left[
\frac {\partial} {\partial t} \vec{J} \left( \vec{r}_s, t + \dfrac {\vec{r}_s \cdot \hat{r}} {c} \right)
\right] \space dV\left(\vec{r}_s\right)
$$
Let us now describe the source. As a consequence of the continuity equation, the points $A$ and $B$ will have a time varying electric charge. Thus, our source actually consists of three distinct parts:
- The segment $\overline{BA}$, carrying the time-varying current $I_0\:\cos\;\omega t\;\hat{\ell}$ at every point.
- The point $A$, having a time-varying charge of $I_0 \int_0^t \cos\;\omega t \;dt = (I_0 / \omega)\sin\;\omega t$
- The point $B$, having a time-varying charge of $-I_0 \int_0^t \cos\;\omega t \;dt = (-I_0 / \omega)\sin\;\omega t$